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Abstract: Wildfire prediction plays a vital role in the management and conservation of forest ecosys-
tems. By providing detailed risk assessments, it contributes to the reduction of fire frequency and
severity, safeguards forest resources, supports ecological stability, and ensures human safety. This
study systematically reviews wildfire prediction literature from 2003 to 2023, emphasizing research
trends and collaborative trends. Our findings reveal a significant increase in research activity between
2019 and 2023, primarily driven by the United States Forest Service and the Chinese Academy of
Sciences. The majority of this research was published in prominent journals such as the International
Journal of Wildland Fire, Forest Ecology and Management, Remote Sensing, and Forests. These
publications predominantly originate from Europe, the United States, and China. Since 2020, there has
been substantial growth in the application of machine learning techniques in predicting forest fires,
particularly in estimating fire occurrence probabilities, simulating fire spread, and projecting post-fire
environmental impacts. Advanced algorithms, including deep learning and ensemble learning, have
shown superior accuracy, suggesting promising directions for future research. Additionally, the
integration of machine learning with cellular automata has markedly improved the simulation of
fire behavior, enhancing both efficiency and precision. The profound impact of climate change on
wildfire prediction also necessitates the inclusion of extensive climate data in predictive models.
Beyond conventional studies focusing on fire behavior and occurrence probabilities, forecasting the
environmental and ecological consequences of fires has become integral to forest fire management
and vital for formulating more effective wildfire strategies. The study concludes that significant
regional disparities in knowledge exist, underscoring the need for improved research capabilities
in underrepresented areas. Moreover, there is an urgent requirement to enhance the application of
artificial intelligence algorithms, such as machine learning, deep learning, and ensemble learning,
and to intensify efforts in identifying and leveraging various wildfire drivers to refine prediction
accuracy. The insights generated from this field will profoundly augment our understanding of
wildfire prediction, assisting policymakers and practitioners in managing forest resources more
sustainably and averting future wildfire calamities.

Keywords: forest; wildland fire; machine learning; visualizaiton; predictive models

1. Introduction

Forests play a crucial role in preserving biodiversity [1], offering habitats for numer-
ous species [2], and regulating the regional climate [3]. They function as carbon sinks [4],
sequestering and storing substantial amounts of carbon dioxide [5], thereby mitigating
the effects of climate change [6]. Additionally, forests play a role in water cycle regula-
tion [7], soil conservation [8], and erosion prevention [9]. In the dual context of accelerating
climate change and urban sprawl, the wildland–urban interface has become increasingly
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vulnerable to wildfires [10]. As a result, the frequency and magnitude of wildfires have
escalated worldwide, posing significant threats to human settlements, ecosystems, and the
environment [11–13]. Effective forest fire management strategies are crucial for mitigating
these risks and protecting the integrity of forest ecosystems [14]. In July 2023, Canada alone
reported a staggering 900 active wildland fires, with 570 uncontrolled, covering a massive
97,000 square kilometers [15]. This represents a significant increase from previous years,
and the Canadian Wildland Fire Centre had earlier predicted 2023 to witness the worst
fire season on record. Rising temperatures, a direct consequence of climate change, are
undeniably pivotal in exacerbating this situation [16]. As temperatures continue to rise,
wildland fires are expected to become even more frequent and severe, posing a major threat
to human settlements, ecosystems, and the environment [17,18]. Accurate wildland fire pre-
diction technologies are thus imperative to mitigate damages, enhancing fire management
efficacy and safety. For instance, Chongqing, China, faced severe wildfires in July 2022
amidst extreme weather, causing substantial ecological and economic losses. By improving
our ability to predict and respond to wildland fires, we can reduce the risk of damage and
loss while also protecting the health and safety of firefighters and the public [19–21].

The impetus behind wildland fire prediction research stems from the urgent need
for advanced fire prevention strategies. Initial predictive efforts focus on estimating fire
occurrence likelihood [22,23], followed by modeling fire behavior and forecasting its spread
trajectory [24–26]. Concurrently, research delves into assessing the environmental after-
math of wildfires [27–29]. Given the unpredictable and perilous nature of wildland fires,
traditional fire zoning proves inadequate, necessitating region-specific approaches that
take into account the unique characteristics of different forest ecosystems and prediction
techniques. Contemporary scholarship divides wildland fire prediction methodologies
into two principal categories: data-driven methods leveraging machine learning or deep
learning algorithms trained on historical fire incidents and environmental drivers to gauge
fire susceptibility in targeted regions [30] and physically based simulations employing
models to emulate and predict fire spread dynamics within tailored environments [31]. The
development of machine learning, deep learning, and ensemble learning algorithms has
considerably enhanced the accuracy of wildland fire prediction by incorporating multiple
data sources and factors [32–34]. Additionally, the fusion of machine learning and cellular
automata in wildland fire spread simulation has significant potential for future research,
enabling the simulation of fire behavior and spread in complex environments [35–37].
By continually refining and improving these models, we can enhance our understand-
ing of wildland fire behavior and improve our ability to effectively predict and manage
wildland fires.

Bibliometrics is a quantitative approach to analyzing the patterns, trends, and impact
of scientific research within a specific domain [38]. This encompasses the quantitative
analysis and evaluation of various aspects of scholarly publications. These aspects in-
clude authorship, institutional affiliations, journals, countries, citation frequency, and
key thematic elements. Information visualization is essential for efficiently assessing and
identifying the strengths, current status, and research gaps across diverse research do-
mains [39]. In recent years, bibliometric analysis has been extensively employed in the field
of forestry, covering diverse areas such as biochar in forest soils, forest eco-products, forest
management research, and more.

The objective of this study is to conduct a critical thematic review of wildland fire
prediction through a bibliometric analysis of existing literature. Four objectives are as-
sociated with this goal: (i) comprehensively understand the current state of knowledge
on wildland fires, (ii) identify the most influential articles, authors, and journals in the
field, (iii) examine the thematic evolution of literature over time, and (iv) identify new
trends and potential directions for future research. The organization of this paper is as
follows: Section 2 provides an overview of the methods used to obtain relevant data and
briefly discusses the software employed in the bibliometric analysis. Section 3 presents the
results and visualizations of the bibliometric analysis, including the identification of key
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themes. Section 4 critically discusses the emerging themes. Finally, the main findings are
summarized, and areas requiring further research are reiterated. The research framework is
summarized in Figure 1, which provides a visual representation of the study’s methodology
and structure.
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2. Data and Methods
2.1. Data Source

Web of Science is an internationally recognized database of scientific and technical
literature known for its rigorous research standards. The Web of Science Core Collection, a
compilation of research source databases, was used for the search. The search query used
was “TS = (wildland fire OR wild fire OR forest fire) AND (prediction OR forecast)”, aiming
to encompass a wide range of wildland fire prediction research, including forest fires,
grassland fires, and tundra fires, where “TS” represents the subject. Data were retrieved
on 1 April 2024. The selection criteria for literature were as follows: only “article”-type
literature written in English was included, excluding news, notices, and other non-relevant
literature. Following screening, a plain text file named “download” was exported. The
obtained articles were then processed using CiteSpace software (version 6.1.6), yielding a
dataset of 2433 articles.

2.2. Methods

Compared to traditional review methods, which can introduce subjective biases, bib-
liometric analysis is objective, precise, and effective, allowing for quantitative exploration
of the characteristics and patterns inherent to research topics. CiteSpace, a robust visualiza-
tion tool designed for professional literature analysis, excels in information visualization.
Using version 6.1.6 of CiteSpace, we analyzed 2433 scholarly articles (from 2003 to 2023).
Our analysis included institutional and country contributions, keyword co-occurrence,
clustering, and emergence, resulting in the development of various knowledge maps. The
parameters were set as follows: Time Slicing (2003–2023), Year Per Slice (1 year per slice),
Path Finder (pathfinding mode), and Pruning (pruning slice networks). For network anal-
ysis, we selected the following node types: Author, Cited Journal, Institution, Country,
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Reference, and Keyword. The author collaboration network map provided insights into the
collaboration patterns among authors. The impact of journals was evaluated using their
citation network. The institutional cooperation network map identified the institutional
collaboration landscape and prominent research organizations. The national collaboration
network map highlighted the influence of countries on the field. The significance of indi-
vidual works was assessed by examining the co-citation relationships among publications.
Using the keyword co-occurrence and cluster network maps, we identified the current
focal areas in wildland fire prediction research. Analysis of the keyword burst map further
elucidated the thematic shifts and emerging trends in wildland fire prediction research.

3. Results and Discussion
3.1. Analysis of Publication Outputs

We utilized Microsoft Excel 365 to conduct an analysis of the annual publication
volume of literature on wildland fire prediction spanning the last 20 years (Figure 2).By
applying Equation (1) with an R2 value greater than 0.9, the trendline demonstrates a high
level of reliability.

y = 30-99e0.1149x (1)
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Figure 2. Number of publications in each year from 2003 to 2023.

The trend line indicates a steady increase in the number of publications on wildland
fire prediction research, which is anticipated to continue in the future. The period from 2003
to 2010 represented the initial phase of wildland fire prediction research, with an average
annual publication count of around 40 papers. Nevertheless, there was a year-on-year
increase in publications during this period. In 2003, the Siberian coniferous wildland fire,
the largest fire that year worldwide, significantly impacted ozone depletion, underscoring
the importance of additional research on wildland fire prediction. The period from 2011
to 2018 experienced rapid growth, with over 100 articles published annually, representing
a substantial increase compared to the previous phase. During this period, the North-
west Territories of Canada experienced the largest wildland fire in 30 years, spanning
34,000 square kilometers, which significantly contributed to the advancement of wildland
fire management and prediction research in the region. From 2019 to 2023, there was a
rapid increase in the number of published papers, with an average annual count of over
240 papers, representing 50% of the total publications in the past 20 years. In recent years,
the frequency and scale of wildland fires in various countries increased due to climate
change. Notably, the 2020 Australian wildland fire, which burned for 152 days, the 2021
Siberian wildfire that remained uncontrolled, and the largest wildfire in California in 2022
all highlight the impact of climate change on wildland fires. Consequently, the wildland
fire prediction research literature during this period emphasized the implications of climate
change on wildland fires.
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3.2. Analysis of Core Authors

Table 1 presents the top ten contributors to wildland fire prediction research, extracted
from the Web of Science database, including data on the number of publications, research
topics, and H-index values of contributing authors. The H-index serves as a composite
metric to assess both the productivity and impact of researchers. Between 2003 and 2023,
a total of 740 authors conducted research related to wildland fire prediction. Currently,
the majority of scholarly efforts in this field focus on pre-fire prediction, including the
development of models to predict fire likelihood and the modeling of fire spread dynamics
after ignition. In addition to conventional predictions of fire probability and simulations of
fire propagation, scholars like Robichaud, P. have explored the prediction and evaluation of
environmental changes and damages caused by wildland fires [40,41]. Flannigan (highest
H-index) has extensively researched the uncertainties inherent in wildfire forecasting due
to fluctuating fire drivers influenced by climate change [42–44]. In terms of research focus,
the simulation of wildland fire spread has garnered considerable scholarly interest. Prolific
authors in this domain, including Cortes, Margalef, and Viegas, are recognized for their
extensive publication record and robust collaborative efforts, particularly in advancing
wildland fire spread simulations through enhanced GPU performance, investigating the
role of wind in fire spread dynamics, and developing efficient simulation tools [45,46].
Recent publications reveal a concerted effort by international scholars to refine wildland
fire prediction methodologies. These strategies encompass the utilization of machine
learning, deep learning, and other advanced algorithms to forecast fire probabilities and
design fire spread models and simulators [47,48].

Table 1. Top 10 Authors in the field of wildland fire prediction research.

Publications Author H Index Research Hotspots and Content

32 Viegas, D.X. 30 Simulation of Wildland fire Spread and Canopy Fire Dynamics
23 Margalef, T. 14 Wildland fire Spread Prediction

23 Cortes, A. 16 Optimization of Wildland fire Spread Models and Development of a Fire
Spread Simulator

20 Sullivan, A.L. 26 Influence of Fuel and Slope on Wildland fire Spread”

19 Cruz, M.G. 29 Developing a Wildfire Spread Model and Examining the Influence of
Fuel Factors

19 Robichaud, P.R. 38 Predicting and Assessing Environmental Changes Following Wildfire Events
17 Flannigan, M.D. 72 The Role of Climate Change Factors in Wildfire Occurrence
17 Alexander, M.E. 31 Improving Fire Spread Models and Predicting Crown Fire Behavior
16 Penman, T.D. 34 The Impact of Changes in Wildfire Drivers on Prediction Accuracy
16 Guo, F. 16 Machine Learning for Predicting Wildfire Susceptibility

3.3. High-Yielding Journals

An analysis conducted using data from the Web of Science database revealed that the
International Journal of Wildland Fire, with 208 publications, ranks as the leading journal
in the domain of wildland fire prediction, followed closely by Forest Ecology and Manage-
ment (122 publications), Remote Sensing (104 publications), Forests (95 publications), and
Fire (80 publications). According to Figure 3, these journals collectively make significant
contributions to the field and demonstrate substantial academic engagement. Beyond
journals specifically dedicated to wildland fire and forestry topics, Remote Sensing (ranked
third) and Remote Sensing of Environment (ranked seventh) feature prominently among
the top ten journals by publication volume. Notably, Remote Sensing of Environment is
recognized as the premier journal in the realm of remote sensing research. Further insights
emerge from utilizing the “Cited Journal” functionality within CiteSpace software, which
indicates that the International Journal of Wildland Fire is the most frequently cited journal
in the field (1397 citations), trailed by Forest Ecology and Management (1256 citations), the
Canadian Journal of Forest Research (919 citations), Science (764 citations), and Ecology
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(745 citations). Collectively, these five journals exert considerable academic influence in
wildland fire prediction studies.
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3.4. High-Output Countries and Institutes

This analysis encompasses data from 110 countries to determine which nations signifi-
cantly contribute to wildland fire prediction research. Figure 4 visualizes the publication
output by country, where “N” represents nodes and “E” denotes links. “Density” is used
to indicate the connectivity level between nodes, with larger nodes depicting a higher
volume of publications. Nodes highlighted with purple outlines indicate high betweenness
centrality, signifying the frequency at which a node serves as a bridge along the shortest
path between two other nodes. The density of these lines reflects the strength and frequency
of collaborative research between countries. The data reveal that the United States, China,
Australia, Canada, and Spain are the top five publishing countries. Notably, Australia, the
United States, and Canada have particularly dense networks of collaboration, underscoring
their crucial roles in advancing global wildland fire prediction research.
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An in-depth analysis was conducted to explore global contributions to wildland fire
prediction research, focusing on publication metrics and geographic distribution. Table 2
presents the top ten countries ranked by publication volume, centrality in the research
network, and their respective continents. The United States emerges as a dominant force
in this field, boasting the highest number of publications and centrality, with 928 papers
published between 2003 and 2023. This leadership is likely due to the frequent wildland
fire incidents nationwide, especially in California, where substantial wildfire risks have
spurred increased research and management efforts in fire prediction. Although China
ranks second in publication count, it still significantly trails the United States in research
output. Notably, while half of the top ten countries are in Europe, the others are distributed
across North America and Asia, underscoring the extensive global collaboration in this
vital field.

Table 2. Statistical data of the top ten countries with the highest publication volume.

Rank Country Publications Centrality Continent

1 USA 928 0.27 North America
2 China 354 0.24 Asia
3 Australia 315 0.20 Oceania
4 Canada 262 0.06 North America
5 Spain 211 0.09 Europe
6 England 112 0.10 Europe
7 Portugal 96 0.07 Europe
8 India 90 0.07 Asia
9 Germany 86 0.08 Europe
10 France 84 0.13 Europe

Institutional research depth in the domain of wildland fire prediction varies signif-
icantly across different countries, demonstrating a rich tapestry of global contributions.
Using CiteSpace software, we constructed a network collaboration map (Figure 5) of insti-
tutions involved in wildland fire prediction, comprising 564 nodes and 1110 links, with
a network density of 0.007. The analysis identifies the US Forest Service, the Chinese
Academy of Sciences, the University of Melbourne, Natural Resources Canada, and Col-
orado State University as the leading institutions by publication volume. Among these, the
US Forest Service holds considerable influence, highlighting its central role in advancing
research and knowledge in wildland fire prediction.
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This study highlights the crucial role played by leading research institutions in advanc-
ing wildland fire prediction. Table 3 details the top ten institutions, primarily universities
and national resource bureaus, ranked by the number of published papers in this field
(from 2003 to 2023). Notably, the US Forest Service, with 205 articles, leads, followed by
the Chinese Academy of Sciences with 64 articles, and the University of Melbourne with
52 articles. These data underscore the dominance of the US Forest Service, both in terms
of publication volume and its central position in the network. Furthermore, geographical
analysis shows that most of these leading institutions are located in the United States, with
significant representation also from China and Canada. This geographic distribution not
only reflects a global effort but also underscores extensive collaboration in the vital field of
wildland fire prediction.

Table 3. The top 10 high-productivity institutions.

Rank Institution Publications Centrality Country

1 US Forest Service 205 0.30 USA
2 Chinese Academy of Sciences 64 0.11 China
3 University of Melbourne 52 0.07 Australia
4 Natural Resources Canada 48 0.06 Canada
5 Colorado State University 45 0.06 USA
6 Northeast Forestry University 42 0.01 China
7 University of California, Berkeley 36 0.09 USA
8 United States Geological Survey 34 0.05 USA
9 University of Alberta 34 0.08 Canada

10 University of Washington 33 0.03 USA

3.5. Co-Citation Analysis of Papers

Co-citation analysis, facilitated by software like CiteSpace, provides a valuable method
for examining relationships within a field of research. Co-citation occurs when two or
more publications are jointly cited by subsequent works, indicating a potential intellectual
connection. By visualizing these relationships as networks, researchers can trace the
evolution of a field, identifying influential publications and emerging trends. Figure 6,
generated using CiteSpace, depicts the co-citation network for wildfire prediction research.
Each node represents a publication, with node size correlating to co-citation frequency.
The color gradient, progressing from gray to purple, blue, and ultimately red and orange,
reflects both the publication’s temporal placement (2003–2023) and its citation frequency,
with red signifying the highest. The graph demonstrates a rising trend in citation frequency
from 2003 to 2023, peaking in 2019 and 2020. Table 4 lists the top 10 most frequently cited
papers, showing that the paper by Jain (2020), with 65 co-citations, emerges as the most
frequently cited, significantly impacting wildland fire prediction research. As a review
paper and the earliest cited paper in the year, it provides a comprehensive and in-depth
overview of machine learning methods for wildland fire prediction, offering significant
guidance and theoretical implications for the subsequent application of machine learning
in wildland fire prediction research [49].

The remaining tables categorize highly cited publications into three primary research
areas: machine learning-based fire risk prediction models, the impact of climate change on
wildfire occurrence [50,51], and analysis of factors influencing wildfire events [52]. Notably,
a significant portion (six publications) focus on wildland fire prediction using machine
learning. These studies explore various methodologies, including individual machine
learning algorithms (e.g., convolutional neural networks) [53], hybrid simulation models
integrating GIS and neuro-fuzzy systems [47,54], and combined applications of multiple
machine learning algorithms [55–57].
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Table 4. Statistics of the top 10 documents with citation frequency.

Title Author Journal Year Citation
Frequency

A review of machine learning applications in wildfire
science and management Jain, P. Environmental Reviews 2020 65

Wildland fire susceptibility modeling using a convolutional
neural network for the Yunnan Province of China Zhang, G.L. International Journal of

Disaster Risk Science 2019 54

A hybrid artificial intelligence approach using a GIS-based
neural-fuzzy inference system and particle swarm

optimization for wildland fire susceptibility modeling in a
tropical area

Bui, D. Agricultural and Forest
Meteorology 2017 52

Impact of anthropogenic climate change on wildfire across
western US forests Abatzoglou, J.T. PNAS 2016 47

Hybrid artificial intelligence models based on a neuro-fuzzy
system and metaheuristic optimization algorithms for

spatial prediction of wildfire probability
Jaafari, A. Agricultural and Forest

Meteorology 2019 40

Climate-induced variations in global wildfire danger from
1979 to 2013 Jolly, W.M. Nature

Communications 2015 39

Investigation of general indicators influencing on wildland
fire and its susceptibility modeling using different data

mining techniques
Pourtaghi, Z.S. Ecological Indicators 2015 37

GIS-based evolutionary optimized gradient-boosted decision
trees for wildland fire susceptibility mapping Sachdeva, S. Natural Hazards 2018 33

A novel ensemble modeling approach for the spatial
prediction of tropical wildland fire susceptibility using a
LogitBoost machine learning classifier and multi-source

geospatial data

Tehrany, M.S. Theoretical and Applied
Climatology 2019 32

Applying genetic algorithms to set the optimal combination
of wildland fire related variables and model wildland fire
susceptibility based on data mining models. The case of

Dayu County, China

Hong, H.Y. Science of The Total
Environment 2018 31

3.6. Analysis of Terms

Keywords offer valuable insights into the foundational themes of a research field.
By analyzing keyword connections, occurrence frequencies, and co-occurrence patterns,
researchers can identify hotspots and emerging trends [58]. Employing CiteSpace software,
we conducted a keyword co-occurrence analysis that produced a collinear network map of
keywords (Figure 7) and identified the top 20 keywords in wildland fire prediction research
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(Table 5). The network map includes 657 nodes, each node representing a keyword, where
the size of a node indicates the keyword’s occurrence frequency. To enhance visualization,
duplicate keywords were removed. In terms of centrality, a metric of keyword influence,
“fire”, “climate change”, and “vegetation” emerge as the most influential keywords. The
top three keywords with the highest frequency are “model”, “prediction”, and “wildland
fire”. Notably, keywords related to wildland fire prediction models include “prediction”,
“model”, “machine learning”, and “logistic regression”.
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Table 5. Top 20 high-frequency keywords in wildland fire prediction research.

Number Frequency Centrality Keyword Number Frequency Centrality Keyword

1 412 0.04 model 11 179 0.05 management
2 389 0.03 prediction 12 168 0.03 impact
3 363 0.05 wildland fire 13 157 0.02 wildland fire
4 349 0.06 forest 14 154 0.03 climate
5 333 0.06 climate change 15 144 0.02 risk
6 288 0.07 fire 16 138 0.02 spread
7 254 0.04 wildfire 17 122 0.04 system
8 223 0.06 vegetation 18 120 0.03 behavior
9 185 0.03 dynamics 19 119 0.01 machine learning
10 184 0.05 pattern 20 115 0.03 logistic regression

Wildland fire prediction research initially relied on logistic regression algorithms
for regional predictions, yielding moderate accuracy, as exemplified by Fan et al.’s 2007
study, which reported a 70% accuracy rate using binary logistic regression [59]. However,
with the advancement of prediction accuracy and the emergence of alternative machine
learning algorithms, logistic regression models were surpassed by random forest models,
which have become a widely accepted approach in wildland fire prediction. For example,
Chen et al.’s 2023 study in Northeast China achieved an accuracy rate of 87.5% using
random forest [60]. As the application of diverse machine learning models in wildland fire
prediction continues to expand, the demand for model accuracy has concurrently increased.
Notably, Truong et al.’s 2023 study introduced a forest fire risk modeling approach that
harnesses TensorFlow deep neural networks (TFDeepNN) and geographic information
systems (GIS), outperforming random forest (RF), support vector machine (SVM), and
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logistic regression (LR) models in terms of prediction performance, with an F-score of 0.806,
an accuracy rate of 79.3%, and an AUC of 0.873 [61]. The deep learning approach, which
can automatically screen data, extract high-dimensional features, and recognize text and
images, offers significant potential for enhancing wildland fire prediction research.

The analysis of the keyword co-occurrence network map and the top 20 keywords
indicates that current research hotspots in wildland fire prediction encompass model
development, climate change impacts, vegetation dynamics, fuel factors, and fire behavior.
Keywords such as “climate change”, “vegetation”, “impact”, and “climate” suggest a
focus on the causes and driving factors of wildland fires. Keywords like “management,
“system”, and “pattern” highlight the importance of fire management strategies to mitigate
fire impacts. Research on fire spread dynamics is reflected in keywords such as “dynamics”,
“spread”, and “behavior”.

3.7. Analysis of the Keywords Cluster

We performed cluster analysis on the keyword co-occurrence map using the log-
likelihood rate (LLR) algorithm in CiteSpace 6.1.6, producing the keyword cluster map
depicted in Figure 8. We assessed the quality of clustering using modularity (Q) and
silhouette (S) values. Generally, a Q-value above 0.3 indicates significant community
structure, while an S-value above 0.5 suggests reasonable clustering results, and values
above 0.7 indicate highly convincing results. In this analysis, a Q-value of 0.4117 and an S-
value of 0.702 signify significant and reliable clustering, respectively. Each cluster contains
numerous keywords, with the cluster label’s size indicating the keyword volume. A smaller
label number indicates a larger cluster. Table 6 presents the keyword clustering table, which
is derived from the graph data. The clustering content with the latest average citation
year represents the most recent research hotspots. Based on the 12 clusters identified in
the graph, this paper identifies three primary research clusters within the field of wildfire
science and management.
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Table 6. keyword clusters of wildland fire prediction.

Cluster
Number Cluster Name Cluster

Size
Average

Citation Year Top 1–5 Keywords in Each Cluster

#0 Fire 103 2009 climate change; vegetation; regeneration; resilience; soil
burn severity

#1 Machine learning 96 2015 machine learning; deep learning; bushfire management;
unmanned aerial vehicle; dynamic brightness

#2 Fire behavior 89 2012 wildland fire; fire spread; wildland fire; building standards;
physics-based simulation

#3 Air quality 70 2010 climate change; prescribed burning; forest management; soil
erodibility; support vector machines

#4 Logistic regression 68 2009 wildland fire; relevance vector machines; imperialist
competitive algorithm; sensitivity analysis; wildfire spread

#5 Fuel load 58 2016 machine learning; wildland fire; ensemble models; Bayesian
optimization; hyperparameter tuning

#6 Soil erosion 49 2015 soil erosion; forest management; gauged–ungauged
watersheds; decision-support tools; sediment yield

#7 Fire management 39 2012 fire management; pyrogenic carbon; organic matter; carbon
sequestration; risk assessment

#8 Multiple regression 28 2017 terrestrial lidar; surface fuel load; airborne lidar; multiple
regression; litter-bed fuel depth

#9 Water storage 23 2013 bark thickness; crown damage; flame-front residence time;
fireline intensity; cambium damage

#10 Burn probability 18 2007 assemblage; model; habitat fragmentation; mortality; edge

#11 Wildland fire
propagation 3 2016 wildland fire propagation; wind field; domain

decomposition; Schur method

This research area primarily focuses on leveraging machine learning algorithms to
train models on various wildfire drivers and datasets, ultimately aiming to predict wildfire
occurrences. Beyond traditional machine learning algorithms, deep learning and intelligent
optimization algorithms, such as the imperialist competitive algorithm, are also gaining
traction in wildfire prediction models. While logistic regression (#8) represents an early
application in this field, its individual accuracy has been found to be limited. For instance,
Goldarag et al. demonstrated that combining logistic regression with artificial neural
networks for modeling wildfire risk zones led to significantly improved accuracy compared
to using logistic regression alone [62]. Demonstrating the versatility of machine learning,
UAVs are increasingly integrated with these technologies for early wildfire detection. Yanik
et al. proposed a novel, cost-effective, and accurate early wildfire detection system based
on this synergy [63]. Similarly, Le et al. developed a new intelligent approach for wildfire
danger modeling using a hybrid model based on the imperialist competitive algorithm
(ICA) and relevance vector machines (RVM) [64]. This model outperformed benchmark
models like random forest and support vector machines. Among these applications,
multiple regression (#8) emerges as a foundational and evolving technique. With its ability
to analyze multiple independent and dependent variables, it offers enhanced predictive
accuracy. Notably, Zema et al. compared multiple regression models with random forest
models in the context of prescribed burning and found that multiple regression provided
superior predictions for forest runoff and erosion [65].

The second cluster explores wildfire behavior and spread simulation, encompassing
research areas such as fire behavior (#2) and wildland fire propagation (#11). Key themes
within this cluster include physics-based simulations, wind field dynamics, domain decom-
position techniques, and the application of the Schur method. Current research focuses on
developing robust wildfire simulation environments, analyzing the influence of wind field
variations on fire spread, and optimizing simulation accuracy through the implementation
of cellular automata and other advanced algorithms. For instance, Moinuddin et al. demon-
strated that physics-based models outperformed the Mk III and V (McArthur) models in
predicting the rate of spread (RoS) under varying wind conditions, although they were
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surpassed by the CSIRO model in terms of speed [66]. Similarly, cellular automata have
emerged as a promising approach for wildfire spread simulations [67], exhibiting enhanced
predictive capabilities when integrated with machine learning techniques. Notably, Zheng
et al. proposed a novel cellular automata modeling approach by incorporating extreme
learning machines (ELM) into traditional wildfire CA frameworks [68]. Their findings
highlighted the efficacy of ELM in predicting ignition probabilities for individual cells,
demonstrating the proposed method’s ability to accurately capture the impact of wind
speed on fire spread patterns.

The third cluster focuses on the environmental impacts of wildfires, emphasizing
studies on climate change and soil erosion. This research area encompasses studies related
to fire (#0), air quality (#3), soil erosion (#6), and fire management (#7), utilizing keywords
such as prescribed burning, soil erodibility, support vector machines, and decision-support
tools. Recognizing the substantial environmental damage caused by wildfires, including
widespread air pollution, black carbon emissions, and accelerated soil erosion, researchers
are increasingly employing tools like machine learning to predict pollution levels and
assess the environmental consequences of wildfires [69,70].

3.8. Trend Analysis

Using CiteSpace software’s co-word analysis feature, burst keywords are identified
as those experiencing a rapid increase in citation frequency within a specific timeframe.
These keywords offer insights into emerging trends and dynamic changes in a research field
during that period. We set the parameter to ‘Burst terms’ in CiteSpace to generate a keyword
burst map covering wildland fire prediction research from 2003 to 2023 (Figure 9). The
burst strength of a keyword, indicating the magnitude of its citation frequency, represents
its influence, with higher values denoting greater impact.
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Analysis of the keyword burst map shows that “machine learning” emerged as the
keyword with the highest burst strength, registering a burst value of 19.75 between 2020
and 2023. This highlights the growing influence of machine learning in recent years.
Keywords such as ‘growth’ and ‘ecosystem’, which displayed the longest burst duration
until 2015, indicate an earlier focus on vegetation growth and the impact of fires on
ecosystems. Notably, keywords that have shown recent bursts from their start dates to the
present suggest potential directions for future research. These include “machine learning”,
“susceptibility”, “burned area”, “optimization”, “neural network”, “convolution neural
network”, “artificial intelligence”, and “network”.

3.8.1. Machine Learning

From 2003 to 2023, keyword co-occurrence and cluster network analysis reveal that
‘machine learning’ appears 119 times, ranks as cluster #1, and shows the highest emergence
intensity at 19.75. As a subfield of artificial intelligence, machine learning uses algorithms
to discern patterns in datasets and make predictions, particularly excelling when the data
are robust [71,72]. The development of artificial intelligence is paramount in wildland
fire prediction research, encompassing various algorithmic applications such as machine
learning, deep learning, and integrated learning [32]. Keyword analysis indicates that
logistic regression and random forest models are commonly employed in current prediction
models. However, a consensus among researchers suggests that random forest models
exhibit higher prediction accuracy compared to logistic regression models. For instance,
Bo Yu et al. achieved a correlation coefficient of 0.987 and a mean square error of 0.00285
in Cambodia by training a random forest model with remote sensing data [73]. This
demonstrates the model’s high efficiency and accuracy in predicting fire occurrence. Shrma
et al. evaluated the accuracy of six machine learning algorithms in Indian rainforests,
concluding that support vector machines and artificial neural networks displayed superior
performance [74]. Ge et al. proposed a wildland fire prediction method integrating a spatio-
temporal knowledge graph and a machine learning model. By constructing a wildland fire
semantic ontology and spatio-temporal framework based on the knowledge graph, this
method fuses multi-source heterogeneous spatio-temporal wildland fire data, achieving
high prediction performance in experimental predictions for Xichang City and Yanyuan City
in Sichuan Province [75]. With ongoing research in machine learning, numerous models
have demonstrated accuracy comparable to that of random forest models. Gao et al.,
utilizing local historical disaster data and meteorological and topographic data, applied
both random forest and back propagation neural network models to predict wildland fires
in Heilongjiang province [76]. Their findings indicate that both algorithms achieve high
prediction accuracy and goodness of fit.

Advancements in machine learning have spurred explorations into deep learning and
integrated learning for enhancing wildland fire prediction [77]. You et al. employed a
particle swarm optimization algorithm to evolve the optimal architecture and parameters
for a convolutional neural network deep learning model [78]. The prediction results for
wildland fire risk across China surpassed those of single random forest, support vector
machine, and convolutional neural network models, achieving a prediction accuracy rate
of 82.2%. While deep learning excels in processing large-scale complex data and images,
integrated learning combines multiple models to enhance prediction accuracy. Li et al.
applied an integrated approach using random forest, extreme gradient boosting, LightGBM,
and multi-layer perceptron models to analyze diverse data types such as weather, terrain,
vegetation, and human activities. The area under the receiver operating characteristic curve
(ROC value) reached 0.970, significantly exceeding the predictive capabilities of single
machine learning models.

The application of diverse algorithm models aims to minimize manual calculations.
Remote sensing satellites, using fire point temperatures, can also predict wildland fires to
a certain extent, offering an alternative to the predictive algorithms of machine learning
models. However, manual interpretation of remote sensing images presents significant
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workloads and limited accuracy. Algorithm optimization enhances recognition efficiency.
Vegetation water content and combustible content are crucial indicators for assessing
wildland fire occurrence. Adab et al. applied artificial neural networks and multiple linear
regression to predict forest leaf water content using MODIS remote sensing data in northern
Iran, enabling near-real-time detection in fire-prone areas [79].

3.8.2. Wildland Fire Spread Model Prediction

Key terms in wildland fire spread research include “spread”, “behavior”, and “dynam-
ics”, encompassed under keyword cluster #11, “wildland fire propagation”. The prediction
of wildland fire behavior during outbreaks has been extensively researched by scholars.
When wildland fires cannot be prevented, accurately predicting their spreading direction
can significantly enhance fire suppression success rates and mitigate disaster impacts. Since
the early 20th century, research on wildland fire spread simulation has evolved, with promi-
nent models such as the Rothermel model in the United States [80], the McArthur model
in Australia [81], and the Wang Zhengfei model in China [82]. Enhancements to these
models, such as Yao Yanxia et al.’s coupling of the Rothermel model with particle systems,
have improved simulation accuracy and realism [83]. In model simulations, wind field
factors are crucial; accounting for variables like terrain that influence wind field changes is
essential to reduce simulation errors. Increasingly, researchers are integrating the WRF me-
teorological model to enhance predictions of wind trends and simulation accuracy. Due to
their simplicity and low computational complexity, cellular automata have become widely
used in wildland fire spread modeling. Rui et al. coupled cellular automata with wildland
fire models, demonstrating high spatiotemporal synchronization with fire spread in the
Greater Khingan Mountains in 2006 [84]. GIS applications, in conjunction with wildland
fire spread simulation models, have proven to be both extensive and efficient. GIS can
simulate fire spread paths and speeds, predict fire spreading directions, and provide early
warning and planning support for fire occurrence decision-making. For instance, S-Yassemi
et al. developed a fire behavior model combining terrain, forest fuels, and meteorological
factors, which can effectively simulate real wildland fire scenes and generate real-time
dynamic images [85].

3.8.3. Climate Change and Environmental Changes Caused by Wildland Fires

Climate change is a significant driver of environmental changes, profoundly affecting
wildland fire dynamics [86]. In our analysis, key terms related to climate change appeared
333 times, with the keyword clustering diagram linking terms like “fire” (#0) and “air
quality” (#3) to climate change. In the background of large-scale wildland fires around
the world, climate change factors play a significant role in driving these events [87]. Tem-
perature anomalies and altered precipitation patterns, driven by climate change, not only
fluctuate the probability of wildland fires but also increase their frequency and severity [88].
Mina et al. found that the frequency of wildland fires in the northern Indian state of
Uttarakhand was significantly correlated with local temperature (maximum, average, and
diurnal temperature range) changes, with temperature being a key factor in wildland fire
likelihood [89]. Climate change-driven high temperatures can lead to an increase in the
number of flammable materials within forests, reducing water content and increasing the
likelihood of wildland fires. Climate change-driven changes in forest internal humidity
and precipitation can also lead to faster burning of flammable materials.

The increasing susceptibility of forest ecosystems to fires amid climate change remains
a pressing concern for researchers. This vulnerability is underscored by several studies that
attribute the increasing frequency of wildland fires to abnormally high temperatures caused
by climate change [90,91]. These temperature extremes lead to a higher amount of fuel in
the forest and lower moisture content in trees, exacerbating the susceptibility to wildland
fires [92]. Employing artificial neural networks and support vector machine models, Sakr
et al. effectively predicted wildland fire occurrences with high accuracy based on two
critical parameters: cumulative precipitation and average humidity [93]. Their research
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further elucidated that climate change induces lower humidity and altered precipitation
patterns within forests, rendering combustibles more susceptible to ignition.

Moreover, the impact of climate change on wind patterns cannot be understated.
Changes in wind direction, including the prevalence of valley winds and Foehn winds, are
found to increase the susceptibility to wildland fires. In New Zealand, Siena Brody-Heine
et al. found that variations in wind speed and direction, shaped by weather systems
and localized meteorological processes, significantly affect fire intensity and spread [94].
Expanding on the implications of wildland fires, some scholars have delved into the
subsequent effects on climate and emissions. Liu et al. established a compelling link
between climate change, the greenhouse effect, and the rising number of wildland fires
globally [95]. The smoke particles released during these fires contain black carbon, which
contributes to the warming of the middle and lower atmospheres, exerting a notable impact
on climate dynamics.

Building upon these findings, KITCH et al. uncovered another dimension of wildland
fires’ influence on the atmosphere [96]. They discovered that pyrocumulonimbus clouds,
formed during intense wildland fires, can directly inject smoke into the stratosphere,
leading to a certain level of black carbon and organic aerosol pollution. In a separate study,
ZEMA et al. examined the effects of planned burning on surface runoff and soil erosion [65].
Utilizing a random forest algorithm model and a variable regression model, they predicted
that planned burning would result in increased surface runoff and heightened soil erosion.
Additionally, they noted that rainfall anomalies induced by climate change play a role in
influencing the incidence of wildland fires [97].

In conclusion, the complex relationship between climate change and forest ecosys-
tems crucially demands heightened attention. Temperature anomalies and environmental
changes stemming from climate change are pivotal factors that hinder accurate wildland fire
predictions. FILL et al. substantiated this challenge by demonstrating how climate change
has prolonged dry seasons, reduced rainfall, and sustained periods of thunderstorms in
the coastal plains of the southeastern United States, thereby elevating the probability of
lightning strikes and subsequent wildland fires [98]. Consequently, when forecasting wild-
land fires in specific regions, it is imperative to incorporate climate change considerations
into the analytical framework.

4. Conclusions

This study conducted a systematic literature review and analysis of forest fire prediction-
related literature, focusing on research themes, hotspots, and publication trends. The
analysis aimed to provide insights into the development trajectory of forest fire prediction
and inform future research directions.

1. This systematic literature review provides reliable results and understanding. The
analysis demonstrates that research in the field of wildfire prediction is growing,
with particular increases from 2019 to 2023. The majority of research institutions
are from the United States Forest Service and the Chinese Academy of Sciences,
with publications primarily distributed in forestry and remote sensing journals. The
top-cited journals are the International Journal of Wildland Fire, Forest Ecology
and Management, Remote Sensing, and Forests. The top 10 countries in terms of
publication count are from Europe, with the United States and China being the top two.
According to the high-frequency authors’ research content, the main research topics
in forest fire prediction include applying models to predict fire occurrence probability,
predicting and simulating fire spread, predicting environmental changes after fire,
and the impact of climate change on fire prediction. The most cited paper is Jain P’s
2020 review article on machine learning in forest fire prediction, which will have a
significant influence on the development of this field in the future. Future research can
consider more fire-driven factors and compare different algorithm models to achieve
higher accuracy.
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2. The literature analysis reveals that the hotspots of forest fire prediction research
include machine learning applications in forest fire prediction, the impact of climate
change on fire prediction, fire spread simulation, and environmental impact prediction.
Since 2020, there has been a significant increase in the application of machine learning
in forest fire prediction. Although machine learning has shown high accuracy, other
algorithms, such as deep learning and ensemble learning, have also demonstrated
strong performance in wildfire prediction. The accuracy of most models used is
closely related to the selection of fire-driven factors.

3. According to multiple data, deep learning and ensemble learning have higher accu-
racy rates in forest fire prediction than single machine learning algorithm models,
indicating the future research trend in this field.

4. Fire spread simulation and prediction are based on simulating and predicting fire
behavior after a fire has occurred, and cellular automata have high applicability in sim-
ulating fire behavior. However, the analysis suggests that combining machine learning
with cellular automata will significantly improve simulation efficiency and accuracy.

5. Climate change factors are crucial considerations in wildfire prediction work, not
only due to internal changes in the forest but also external meteorological changes
that have a significant impact on the forest environment. Accurately predicting fire
occurrence under the influence of climate change is a future research trend.

6. Although fire prediction is primarily focused on fire behavior and fire occurrence
probability, predicting the environmental impact and ecological damage caused by
fire is also a requirement for forest fire managers. Incorporating predictions of en-
vironmental impact and ecological damage into wildfire prediction models could
provide valuable insights for wildfire managers and support more comprehensive
wildfire management strategies.
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